Loading
0 رای
  • تحلیل زمان ساخت مدلها با الگوریتم های کارا یادگیری ماشین جهت کاهش نامه های الکترونیکی ناخواسته

  • نویسندگان مقاله
    • سیدمحسن هاشمی آموزشکده فنی و حرفه ای سما ، دانشگاه آزاد اسلامی واحد سوسنگرد، سوسنگرد، ایران
    • عارف سیاحی آموزشکده فنی و حرفه ای سما ، دانشگاه آزاد اسلامی واحد سوسنگرد، سوسنگرد، ایران
  • چکیده مقاله

    هرزنامهها اغلب برای بسیاری از کاربران مزاحم یا مزاحمت ایجاد می کنند. چرا که نه تنها به کاهش قابلیت اطمینان ایمیل می شوند گاهی اوقات کاربران توسط هرزنامه تحت تاثیر تلف شدن پهنای باند شبکه، تلف شدن زمان، هزینه و گاهی اوقات عدمدریافت بعضی پیا ها توسط کاربران می باشند. هرزنامه های که بصورت پست الکترونیکی هستند صرفاً فقط بعنوان زباله نیستند و از آنجایی که شامل فایل پیوست ویروس و عوامل نرم افزارهای جاسوسی هستند می توانند برای یک سیستم و دریافت کنندگان آن خطرناک باشند و با عث از بین رفتن اطلا عات باشد. بنابراین ما نیاز به ابزارهای جهت تشخیص اسپم یا هرزنامه داریم.بسیاری ازتکنیک های تشخیص هرزنامه ها بر اساس روش های یادگیری ماشین پیشنهاد شده است. همانطور که مقدار اسپم به طرز چشم گیری با استفاده از ابزارهای پستی فراوان افزایش یافته است نیاز به روش های جهت تشخیص اسپم و همچنین مقابله با آن را داریم. با این که در حال حاضر و با توجه به تکنولوژی های موجود امکان حذف کامل این نوع از نامه های الکترونیکی ناخواسته وجود ندارد، ولی می توان با استفاده از برخی روش های موجود تعداد آنان را کاهش داد

  • کلید واژه

    اسپم/ ایمیل/ داده کاوی/متن کاوی/ یادگیری ماشین

  • راهنمای خرید و دانلود
    • اگر در مجموعه Confpaper عضو نیستید، به راحتی می توانید از طریق دکمه زیر اصل این مقاله را خریداری نمایید .
    • با عضویت در Confpaper می توانید اصل مقالات را با حداقل 20 درصد تخفیف دریافت نمایید .
    • برای عضویت به صفحه ثبت نام مراجعه نمایید .
    • در صورتی که عضو این پایگاه هستید،از قسمت بالای صفحه با نام کاربری خود وارد سایت شوید .
    • لینک دانلود فایل خریداری شده به ایمیل شما ارسال میگردد .
نظرات کاربران

برای ارسال نظر، لطفا وارد حساب کاربری خود شوید.