Loading
0 رای
  • تشخیص حملات فیشینگ با انتخاب ویژگی مبتنی بر الگوریتم بهینه سازی پروانه

  • نویسندگان مقاله
    • امیر زارع دانشجوی کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد میبد، گروه کامپیوتر، ایران
    • کمال میرزائی عضو هیات علمی، دانشگاه آزاد اسلامی، واحد میبد، گروه کامپیوتر، ایران
  • چکیده مقاله

    فیشنگ یک حمله مبتنی بر مهندسی اجتماعی یا بدافزار است که کاربران را به سمت صفحات جعلی در اینترنت هدایت نموده و اطلاعات مهم آنها را مورد سرقت قرار می¬دهد. شباهت صفحات جعلی به صفحات قانونی و اصلی باعث می¬شود که بیشتر کاربران فریب صفحات جعلی را خورده و اطلاعات مهم خود را در این صفحات درز نمایند. صفحات جعلی در اینترنت دارای مجموعه¬ای از ویژگی¬ها است که برای شناسایی حملات فیشینگ قابل استفاده است اما چالش مهم این روش¬های مبتنی بر داده¬کاوی در آن است که برخی ویژگی¬ها دارای اهمیت بیشتری بوده و برخی دیگر نیز اهمیت زیادی ندارند و دقت یادگیری را کاهش می¬دهند. انتخاب ویژگی یک مکانیزم موثر برای کاهش دادن خطای تشخیص حملات در یادگیری ماشین است از این جهت در این مقاله برای انتخاب ویژگی در تشخیص حملات فیشینگ از نسخه باینری شده الگوریتم بهینه¬سازی پروانه استفاده می¬شود. در روش پیشنهادی هر بردار ویژگی یک پروانه در نظر گرفته می¬شود و توسط این الگوریتم بردار ویژگی بهینه برای تشخیص فیشینگ استخراج می¬شود. نتایج پیاده¬سازی ما در محیط متلب و بر روی مجموعه داده فیشینگ نشان می¬دهد الگوریتم بهینه¬سازی پروانه می¬تواند با دقت بالا ویژگی¬های بهینه را تشخیص داده و دارای دقت و حساسیتی به ترتیب برابر 98.66% و 97.83% در تشخیص صفحات جعلی است و از طرفی نسبت به روش¬های مانند ماشین بردار پشتیبان، شبکه عصبی و درخت تصمیم¬گیری دقت بیشتری دارد.

  • کلید واژه

    فیشینگ/سرقت اطلاعات/الگوریتم پروانه/انتخاب ویژگی

  • راهنمای خرید و دانلود
    • اگر در مجموعه Confpaper عضو نیستید، به راحتی می توانید از طریق دکمه زیر اصل این مقاله را خریداری نمایید .
    • با عضویت در Confpaper می توانید اصل مقالات را با حداقل 20 درصد تخفیف دریافت نمایید .
    • برای عضویت به صفحه ثبت نام مراجعه نمایید .
    • در صورتی که عضو این پایگاه هستید،از قسمت بالای صفحه با نام کاربری خود وارد سایت شوید .
    • لینک دانلود فایل خریداری شده به ایمیل شما ارسال میگردد .
نظرات کاربران

برای ارسال نظر، لطفا وارد حساب کاربری خود شوید.